r软件 二维正态分布 r 二维正态分布 - 电脑 - 【南平电脑网】_南平电脑维修_南平笔记本电脑维修_监控安装_市区上门维修
公司动态

r软件 二维正态分布 r 二维正态分布

摘要:设(X,Y)服从二维正态分布,且E(X)=E(Y)=0,E(X*X)=E(Y*Y)=1,E(XY) SPSS分析调查问卷数据的方法当我们的调查问卷在把调查数据拿回来后,我们该做的工作就是用相关的统...

发布日期:2020-12-08

r软件 二维正态分布

设(X,Y)服从二维正态分布,且E(X)=E(Y)=0,E(X*X)=E(Y*Y)=1,E(XY)...

SPSS分析调查问卷数据的方法当我们的调查问卷在把调查数据拿回来后,我们该做的工作就是用相关的统计软件进行处理,在此,我们以spss为处理软件,来简要说明一下问卷的处理过程,它的过程大致可分为四个过程:定义变量﹑数据录入﹑统计分析和结果保存.下面将从这四个方面来对问卷的处理做详细的介绍.Spss处理: 第一步:定义变量 大多数情况下我们需要从头定义变量,在打开SPSS后,我们可以看到和excel相似的界面,在界面的左下方可以看到Data View, Variable View两个标签,只需单击左下方的Variable View标签就可以切换到变量定义界面开始定义新变量。

在表格上方可以看到一个变量要设置如下几项:name(变量名)、type(变量类型)、width(变量值的宽度)、decimals(小数位) 、label(变量标签) 、Values(定义具体变量值的标签)、Missing(定义变量缺失值)、Colomns(定义显示列宽)、Align(定义显示对齐方式)、Measure(定义变量类型是连续、有序分类还是无序分类).我们知道在spss中,我们可以把一份问卷上面的每一个问题设为一个变量,这样一份问卷有多少个问题就要有多少个变量与之对应,每一个问题的答案即为变量的取值.现在我们以问卷第一个问题为例来说明变量的设置.为了便于说明,可假设此题为:1.请问你的年龄属于下面哪一个年龄段( )? A:20—29 B:30—39 C:40—49 D:50--59那么我们的变量设置可如下: name即变量名为1,type即类型可根据答案的类型设置,答案我们可以用1、2、3、4来代替A、B、C、D,所以我们选择数字型的,即选择Numeric, width宽度为4,decimals即小数位数位为0(因为答案没有小数点),label即变量标签为“年龄段查询”。

Values用于定义具体变量值的标签,单击Value框右半部的省略号,会弹出变量值标签对话框,在第一个文本框里输入1,第二个输入20—29,然后单击添加即可.同样道理我们可做如下设置,即1=20—29、2=30—39、3=40—49、4=50--59;Missing,用于定义变量缺失值, 单击missing框右侧的省略号,会弹出缺失值对话框, 界面上有一列三个单选钮,默认值为最上方的“无缺失值”;第二项为“不连续缺失值”,最多可以定义3个值;最后一项为“缺失值范围加可选的一个缺失值”,在此我们不设置缺省值,所以选中第一项如图;Colomns,定义显示列宽,可自己根据实际情况设置;Align,定义显示对齐方式,有居左、居右、居中三种方式;Measure,定义变量类型是连续、有序分类还是无序分类。

以上为问卷中常见的单项选择题型的变量设置,下面将对一些特殊情况的变量设置也作一下说明.1.开放式题型的设置:诸如你所在的省份是_____这样的填空题即为开放题,设置这些变量的时候只需要将Value 、Missing两项不设置即可.2.多选题的变量设置:这类题型的设置有两种方法即多重二分法和多重分类法,在这里我们只对多重二分法进行介绍.这种方法的基本思想是把该题每一个选项设置成一个变量,然后将每一个选项拆分为两个选项项,即选中该项和不选中该项.现在举例来说明在spss中的具体操作.比如如下一例:请问您通常获取新闻的方式有哪些( )1 报纸 2 杂志 3 电视 4 收音机 5 网络在spss中设置变量时可为此题设置五个变量,假如此题为问卷第三题,那么变量名分别为3_1、3_2、3_3、3_4、3_5,然后每一个选项有两个选项选中和不选中,只需在Value一项中为每一个变量设置成1=选中此项、0=不选中此项即可.使用该窗口,我们可以把一个问卷中的所有问题作为变量在这个窗口中一次定义。

到此,我们的定义变量的工作就基本上可以结束了.下面我们要作就是数据的录入了.首先,我们要回到数据录入窗口,这很简单,只要我们点击软件左下方的Data View标签就可以了.第二步:数据录入 Spss数据录入有很多方式,大致有一下几种:1.读取SPSS格式的数据2.读取Excel等格式的数据3.读取文本数据(Fixed和Delimiter)4.读取数据库格式数据(分如下两步)(1)配置ODBC (2)在SPSS中通过ODBC和数据库进行但是对于问卷的数据录入其实很简单,只要在spss的数据录入窗口中直接输入就可以了,只是在这里有几点注意的事项需要说明一下.1. 在数据录入窗口,我们可以看到有一个表格,这个表格中的每一行代表一份问卷,我们也称为一个个案.2. 在数据录入窗口中,我们可以看到表格上方出现了1、2、3、4、5…….的标签名,这其实是我们在第一步定义变量中,我们为问卷的每一个问题取的变量名,即1代表第一题,2代表第二题.以次类推.我们只需要在变量名下面输入对应问题的答案即可完成问卷的数据录入.比如上述年龄段查询的例题,如果问卷上勾选了A答案,我们在1下面输入1就行了(不要忘记我们通常是用1、2、3、4来代替A、B、C、D的).3.我们知道一行代表一份问卷,所以有几分问卷,就要有几行的数据.在数据录入完成后,我们要做的就是我们的关键部分,即问卷的统计分析了,因为这时我们已经把问卷中的数据录入我们的软件中了.第三步:统计分析 有了数据,可以利用SPSS的各种分析方法进行分析,但选择何种统计分析...

MATLAB定义多个符号变量

matlab命令 matlab commands and functions list A a abs 绝对值、模、字符的ASCII码值 acos 反余弦 acosh 反双曲余弦 acot 反余切 acoth 反双曲余切 acsc 反余割 acsch 反双曲余割 align 启动图形对象几何位置排列工具 all 所有元素非零为真 angle 相角 ans 表达式计算结果的缺省变量名 any 所有元素非全零为真 area 面域图 argnames 函数M文件宗量名 asec 反正割 asech 反双曲正割 asin 反正弦 asinh 反双曲正弦 assignin 向变量赋值 atan 反正切 atan2 四象限反正切 atanh 反双曲正切 autumn 红黄调秋色图阵 axes 创建轴对象的低层指令 axis 控制轴刻度和风格的高层指令 B b bar 二维直方图 bar3 三维直方图 bar3h 三维水平直方图 barh 二维水平直方图 base2dec X进制转换为十进制 bin2dec 二进制转换为十进制 blanks 创建空格串 bone 蓝色调黑白色图阵 box 框状坐标轴 break while 或for 环中断指令 brighten 亮度控制 C c capture (3版以前)捕获当前图形 cart2pol 直角坐标变为极或柱坐标 cart2sph 直角坐标变为球坐标 cat 串接成高维数组 caxis 色标尺刻度 cd 指定当前目录 cdedit 启动用户菜单、控件回调函数设计工具 cdf2rdf 复数特征值对角阵转为实数块对角阵 ceil 向正无穷取整 cell 创建元胞数组 cell2struct 元胞数组转换为构架数组 celldisp 显示元胞数组内容 cellplot 元胞数组内部结构图示 char 把数值、符号、内联类转换为字符对象 chi2cdf 分布累计概率函数 chi2inv 分布逆累计概率函数 chi2pdf 分布概率密度函数 chi2rnd 分布随机数发生器 chol Cholesky分解 clabel 等位线标识 cla 清除当前轴 class 获知对象类别或创建对象 clc 清除指令窗 clear 清除内存变量和函数 clf 清除图对象 clock 时钟 colorcube 三浓淡多彩交叉色图矩阵 colordef 设置色彩缺省值 colormap 色图 colspace 列空间的基 close 关闭指定窗口 colperm 列排序置换向量 comet 彗星状轨迹图 comet3 三维彗星轨迹图 compass 射线图 compose 求复合函数 cond (逆)条件数 condeig 计算特征值、特征向量同时给出条件数 condest 范 -1条件数估计 conj 复数共轭 contour 等位线 contourf 填色等位线 contour3 三维等位线 contourslice 四维切片等位线图 conv 多项式乘、卷积 cool 青紫调冷色图 copper 古铜调色图 cos 余弦 cosh 双曲余弦 cot 余切 coth 双曲余切 cplxpair 复数共轭成对排列 csc 余割 csch 双曲余割 cumsum 元素累计和 cumtrapz 累计梯形积分 cylinder 创建圆柱 D d dblquad 二重数值积分 deal 分配宗量 deblank 删去串尾部的空格符 dec2base 十进制转换为X进制 dec2bin 十进制转换为二进制 dec2hex 十进制转换为十六进制 deconv 多项式除、解卷 delaunay Delaunay 三角剖分 del2 离散Laplacian差分 demo Matlab演示 det 行列式 diag 矩阵对角元素提取、创建对角阵 diary Matlab指令窗文本内容记录 diff 数值差分、符号微分 digits 符号计算中设置符号数值的精度 dir 目录列表 disp 显示数组 display 显示对象内容的重载函数 dlinmod 离散系统的线性化模型 dmperm 矩阵Dulmage-Mendelsohn 分解 dos 执行DOS 指令并返回结果 double 把其他类型对象转换为双精度数值 drawnow 更新事件队列强迫Matlab刷新屏幕 dsolve 符号计算解微分方程 E e echo M文件被执行指令的显示 edit 启动M文件编辑器 eig 求特征值和特征向量 eigs 求指定的几个特征值 end 控制流FOR等结构体的结尾元素下标 eps 浮点相对精度 error 显示出错信息并中断执行 errortrap 错误发生后程序是否继续执行的控制 erf 误差函数 erfc 误差补函数 erfcx 刻度误差补函数 erfinv 逆误差函数 errorbar 带误差限的曲线图 etreeplot 画消去树 eval 串演算指令 evalin 跨空间串演算指令 exist 检查变量或函数是否已定义 exit 退出Matlab环境 exp 指数函数 expand 符号计算中的展开操作 expint 指数积分函数 expm 常用矩阵指数函数 expm1 Pade法求矩阵指数 expm2 Taylor法求矩阵指数 expm3 特征值分解法求矩阵指数 eye 单位阵 ezcontour 画等位线的简捷指令 ezcontourf 画填色等位线的简捷指令 ezgraph3 画表面图的通用简捷指令 ezmesh 画网线图的简捷指令 ezmeshc 画带等位线的网线图的简捷指令 ezplot 画二维曲线的简捷指令 ezplot3 画三维曲线的简捷指令 ezpolar 画极坐标图的简捷指令 ezsurf 画表面图的简捷指令 ezsurfc 画带等位线的表面图的简捷指令 F f factor 符号计算的因式分解 feather 羽毛图 feedback 反馈连接 feval 执行由串指定的函数 fft 离散Fourier变换 fft2 二维离散Fourier变换 fftn 高维离散Fourier变换 fftshift 直流分量对中的谱 fieldnames 构架域名 figure 创建图形窗 fill3 三维多边形填色图 find 寻找非零元素下标 findobj 寻找具有指定属性的对象图柄 findstr 寻找短串的起始字符下标 findsym 机器确定内存中的符号变量 finverse 符号计算中求反函数 fix 向零取整 flag 红白蓝黑交错色图阵 fliplr 矩阵的左右翻转 flipud 矩阵的上下翻转 flipdim 矩阵沿指定维翻转 floor 向负无穷取整 flops 浮点运算次数 flow Matlab提供的演示数据 fmin 求单变量非线性函数极小值点(旧版) fminbnd 求单变量非线性函数极小值点 fmins 单纯形法求多变量函数极小值点(旧版) fminunc 拟牛顿法求多变量函数极小值点 fmins...

多元统计分析的简介

multivariate statistical analysis研究客观事物中多个变量(或多个因素)之间相互依赖的统计规律性。

它的重要基础之一是多元正态分析。

又称多元分析 。

如果每个个体有多个观测数据,或者从数学上说, 如果个体的观测数据能表为 P维欧几里得空间的点,那么这样的数据叫做多元数据,而分析多元数据的统计方法就叫做多元统计分析 。

它是数理统计学中的一个重要的分支学科。

20世纪30年代,R.A.费希尔,H.霍特林,许宝碌以及S.N.罗伊等人作出了一系列奠基性的工作,使多元统计分析在理论上得到迅速发展。

50年代中期,随着电子计算机的发展和普及 ,多元统计分析在地质 、气象、生物、医学、图像处理、经济分析等许多领域得到了广泛的应用 ,同时也促进了理论的发展。

各种统计软件包如SAS,SPSS等,使实际工作者利用多元统计分析方法解决实际问题更简单方便。

重要的多元统计分析方法有:多重回归分析(简称回归分析)、判别分析、聚类分析、主成分分析、对应分析、因子分析、典型相关分析、多元方差分析等。

早在19世纪就出现了处理二维正态总体(见正态分布)的一些方法,但系统地处理多维概率分布总体的统计分析问题,则开始于20世纪。

人们常把1928年维夏特分布的导出作为多元分析成为一个独立学科的标志。

20世纪30年代,R.A.费希尔、H.霍特林、许宝禄以及S.N.罗伊等人作出了一系列奠基性的工作,使多元统计分析在理论上得到了迅速的进展。

40年代,多元分析在心理、教育、生物等方面获得了一些应用。

由于应用时常需要大量的计算,加上第二次世界大战的影响,使其发展停滞了相当长的时间。

50年代中期,随着电子计算机的发展和普及,它在地质、气象、标准化、生物、图像处理、经济分析等许多领域得到了广泛的应用,也促进了理论的发展。

多元分析发展的初期,主要讨论如何把一元正态总体的统计理论和方法推广到多元正态总体。

多元正态总体的分布由两组参数,即均值向量μ(见数学期望)和协方差矩阵(简称协差阵)∑ (见矩)所决定,记为Np(μ,∑)(p为分布的维数,故又称p维正态分布或p 维正态总体)。

设X1,X2,…,Xn为来自正态总体Np(μ,∑)的样本,则μ和∑的无偏估计(见点估计)分别是和分别称之为样本均值向量和样本协差阵,它们是在各种多元分析问题中常用的统计量。

样本相关阵R 也是一个重要的统计量,它的元素为其中υij为样本协差阵S的元素。

S的分布是维夏特分布,它是一元统计中的Ⅹ2分布的推广。

另一典型问题是:假定两个多维正态分布协差阵相同,检验其均值向量是否相同。

设样本X1,X2,…,Xn抽自正态总体Np(μ1,∑),而Y1,Y2,…,Ym抽自Np(μ2,∑),要检验假设H 0:μ1=μ2(见假设检验)。

在一元统计中使用t统计量(见统计量)作检验;在多元分析中则用T2统计量,,其中,,·,T2的分布称为T2分布。

这是H.霍特林在1936年提出来的。

在上述问题中的多元与一元相应的统计量是类似的,但并非都是如此。

例如,要检验k个正态总体的均值是否相等,在一元统计中是导致F统计量,但在多元分析中可导出许多统计量,最著名的有威尔克斯Λ统计量和最大相对特征根统计量。

研究这些统计量的精确分布和优良性是近几十年来多元统计分析的重要理论课题。

多元统计分析有狭义与广义之分,当假定总体分布是多元正态分布时,称为狭义的,否则称为广义的。

近年来,狭义多元分析的许多内容已被推广到更广的分布之中,特别是推广到一种称为椭球等高分布族之中。

按多元分析所处理的实际问题的性质分类,重要的有如下几种。

简称回归分析。

其特点是同时处理多个因变量。

回归系数和常数的计算公式与通常的情况相仿,只是由于因变量不止一个,原来的每个回归系数在此都成为一个向量。

因此,关于回归系数的检验要用T2统计量;对回归方程的显著性检验要用Λ统计量。

回归分析在地质勘探的应用中发展了一种特殊的形式,称为趋势面分析,它以各种元素的含量作为因变量,把它们对地理坐标进行回归(选用一次、二次或高次的多项式),回归方程称为趋势面,反映了含量的趋势。

残差分析是趋势面分析的重点,找出正的残差异常大的点,在这些点附近,元素的含量特别高,这就有可能形成可采的矿位。

这一方法在其他领域也有应用。

由 k个不同总体的样本来构造判别函数,利用它来决定新的未知类别的样品属于哪一类,这是判别分析所处理的问题。

它在医疗诊断、天气预报、图像识别等方面有广泛的应用。

例如,为了判断某人是否有心脏病,从健康的人和有心脏病的人这两个总体中分别抽取样本,对每人各测两个指标X1和X2,点绘如图 。

可用直线A将平面分成g1和g2两部分,落在g1的绝大部分为健康者,落在g2的绝大部分为心脏病人,利用A的垂线方向l=(l1,l2)来建立判别函数y=l1X1+l2X2,可以求得一常数с,使 yс等价于(X1,X2)落在g2。

由此得判别规则:若,l1X1+l2X2判,即此人为健康者;若,l1X1+l2X2>C判,即此人为心脏病人;若,l1X1+l2X2=c则为待判。

此例的判别函数是线性函数,它简单方便,在实际问题中经常使用。

但有时也用非线性判别函数,特别是二次判...

问卷缺填率达到多少是不能用于分析

SPSS分析调查问卷数据的方法当我们的调查问卷在把调查数据拿回来后,我们该做的工作就是用相关的统计软件进行处理,在此,我们以spss为处理软件,来简要说明一下问卷的处理过程,它的过程大致可分为四个过程:定义变量﹑数据录入﹑统计分析和结果保存.下面将从这四个方面来对问卷的处理做详细的介绍.Spss处理: 第一步:定义变量 大多数情况下我们需要从头定义变量,在打开SPSS后,我们可以看到和excel相似的界面,在界面的左下方可以看到Data View, Variable View两个标签,只需单击左下方的Variable View标签就可以切换到变量定义界面开始定义新变量。

在表格上方可以看到一个变量要设置如下几项:name(变量名)、type(变量类型)、width(变量值的宽度)、decimals(小数位) 、label(变量标签) 、Values(定义具体变量值的标签)、Missing(定义变量缺失值)、Colomns(定义显示列宽)、Align(定义显示对齐方式)、Measure(定义变量类型是连续、有序分类还是无序分类).我们知道在spss中,我们可以把一份问卷上面的每一个问题设为一个变量,这样一份问卷有多少个问题就要有多少个变量与之对应,每一个问题的答案即为变量的取值.现在我们以问卷第一个问题为例来说明变量的设置.为了便于说明,可假设此题为:1.请问你的年龄属于下面哪一个年龄段( )?A:20—29 B:30—39 C:40—49 D:50--59那么我们的变量设置可如下: name即变量名为1,type即类型可根据答案的类型设置,答案我们可以用1、2、3、4来代替A、B、C、D,所以我们选择数字型的,即选择Numeric, width宽度为4,decimals即小数位数位为0(因为答案没有小数点),label即变量标签为“年龄段查询”。

Values用于定义具体变量值的标签,单击Value框右半部的省略号,会弹出变量值标签对话框,在第一个文本框里输入1,第二个输入20—29,然后单击添加即可.同样道理我们可做如下设置,即1=20—29、2=30—39、3=40—49、4=50--59;Missing,用于定义变量缺失值, 单击missing框右侧的省略号,会弹出缺失值对话框, 界面上有一列三个单选钮,默认值为最上方的“无缺失值”;第二项为“不连续缺失值”,最多可以定义3个值;最后一项为“缺失值范围加可选的一个缺失值”,在此我们不设置缺省值,所以选中第一项如图;Colomns,定义显示列宽,可自己根据实际情况设置;Align,定义显示对齐方式,有居左、居右、居中三种方式;Measure,定义变量类型是连续、有序分类还是无序分类。

以上为问卷中常见的单项选择题型的变量设置,下面将对一些特殊情况的变量设置也作一下说明.1.开放式题型的设置:诸如你所在的省份是_____这样的填空题即为开放题,设置这些变量的时候只需要将Value 、Missing两项不设置即可.2.多选题的变量设置:这类题型的设置有两种方法即多重二分法和多重分类法,在这里我们只对多重二分法进行介绍.这种方法的基本思想是把该题每一个选项设置成一个变量,然后将每一个选项拆分为两个选项项,即选中该项和不选中该项.现在举例来说明在spss中的具体操作.比如如下一例:请问您通常获取新闻的方式有哪些( )1 报纸 2 杂志 3 电视 4 收音机 5 网络在spss中设置变量时可为此题设置五个变量,假如此题为问卷第三题,那么变量名分别为3_1、3_2、3_3、3_4、3_5,然后每一个选项有两个选项选中和不选中,只需在Value一项中为每一个变量设置成1=选中此项、0=不选中此项即可.使用该窗口,我们可以把一个问卷中的所有问题作为变量在这个窗口中一次定义。

到此,我们的定义变量的工作就基本上可以结束了.下面我们要作就是数据的录入了.首先,我们要回到数据录入窗口,这很简单,只要我们点击软件左下方的Data View标签就可以了.第二步:数据录入 Spss数据录入有很多方式,大致有一下几种:1.读取SPSS格式的数据2.读取Excel等格式的数据3.读取文本数据(Fixed和Delimiter)4.读取数据库格式数据(分如下两步)(1)配置ODBC (2)在SPSS中通过ODBC和数据库进行但是对于问卷的数据录入其实很简单,只要在spss的数据录入窗口中直接输入就可以了,只是在这里有几点注意的事项需要说明一下.1. 在数据录入窗口,我们可以看到有一个表格,这个表格中的每一行代表一份问卷,我们也称为一个个案.2. 在数据录入窗口中,我们可以看到表格上方出现了1、2、3、4、5…….的标签名,这其实是我们在第一步定义变量中,我们为问卷的每一个问题取的变量名,即1代表第一题,2代表第二题.以次类推.我们只需要在变量名下面输入对应问题的答案即可完成问卷的数据录入.比如上述年龄段查询的例题,如果问卷上勾选了A答案,我们在1下面输入1就行了(不要忘记我们通常是用1、2、3、4来代替A、B、C、D的).3.我们知道一行代表一份问卷,所以有几分问卷,就要有几行的数据.在数据录入完成后,我们要做的就是我们的关键部分,即问卷的统计分析了,因为这时我们已经把问卷中的数据录入我们的软件中了.第三步:统计分析 有了数据,可以利用SPSS的各种分析方法进行分析,但选择何种统计分析...